Shp1 and Ubx2 are adaptors of Cdc48 involved in ubiquitin-dependent protein degradation.

نویسندگان

  • Christian Schuberth
  • Holger Richly
  • Sebastian Rumpf
  • Alexander Buchberger
چکیده

Known activities of the ubiquitin-selective AAA ATPase Cdc48 (p97) require one of the mutually exclusive cofactors Ufd1/Npl4 and Shp1 (p47). Whereas Ufd1/Npl4 recruits Cdc48 to ubiquitylated proteins destined for degradation by the 26S proteasome, the UBX domain protein p47 has so far been linked exclusively to nondegradative Cdc48 functions in membrane fusion processes. Here, we show that all seven UBX domain proteins of Saccharomyces cerevisiae bind to Cdc48, thus constituting an entire new family of Cdc48 cofactors. The two major yeast UBX domain proteins, Shp1 and Ubx2, possess a ubiquitin-binding UBA domain and interact with ubiquitylated proteins in vivo. Deltashp1 and Deltaubx2 strains display defects in the degradation of a ubiquitylated model substrate, are sensitive to various stress conditions and are genetically linked to the 26S proteasome. Our data suggest that Shp1 and Ubx2 are adaptors for Cdc48-dependent protein degradation through the ubiquitin/proteasome pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Ubx2 and Ubx3 Cofactors Direct Cdc48 Activity to Proteolytic and Nonproteolytic Ubiquitin-Dependent Processes

Valosin-containing protein, VCP/p97 or Cdc48, is a eukaryotic ATPase involved in membrane fusion, protein transport, and protein degradation. We describe two proteins, Ubx2 and Ubx3, which interact with Cdc48 in fission yeast. Ubx3 is the ortholog of p47/Shp1, a previously described Cdc48 cofactor involved in membrane fusion, whereas Ubx2 is a novel protein. Cdc48 binds the UBX domains present ...

متن کامل

Perturbations to the Ubiquitin Conjugate Proteome in Yeast Δubx Mutants Identify Ubx2 as a Regulator of Membrane Lipid Composition*

Yeast Cdc48 (p97/VCP in human cells) is a hexameric AAA ATPase that is thought to use ATP hydrolysis to power the segregation of ubiquitin-conjugated proteins from tightly bound partners. Current models posit that Cdc48 is linked to its substrates through adaptor proteins, including a family of seven proteins (13 in human) that contain a Cdc48-binding UBX domain. However, few substrates for spe...

متن کامل

The Budding Yeast Cdc48Shp1 Complex Promotes Cell Cycle Progression by Positive Regulation of Protein Phosphatase 1 (Glc7)

The conserved, ubiquitin-selective AAA ATPase Cdc48 regulates numerous cellular processes including protein quality control, DNA repair and the cell cycle. Cdc48 function is tightly controlled by a multitude of cofactors mediating substrate specificity and processing. The UBX domain protein Shp1 is a bona fide substrate-recruiting cofactor of Cdc48 in the budding yeast S. cerevisiae. Even thoug...

متن کامل

Cdc48/p97 and Shp1/p47 regulate autophagosome biogenesis in concert with ubiquitin-like Atg8

The molecular details of the biogenesis of double-membraned autophagosomes are poorly understood. We identify the Saccharomyces cerevisiae AAA-adenosine triphosphatase Cdc48 and its substrate-recruiting cofactor Shp1/Ubx1 as novel components needed for autophagosome biogenesis. In mammals, the Cdc48 homologue p97/VCP and the Shp1 homologue p47 mediate Golgi reassembly by extracting an unknown m...

متن کامل

The AAA-ATPase Cdc48 and cofactor Shp1 promote chromosome bi-orientation by balancing Aurora B activity.

The assembly, disassembly and dynamic movement of macromolecules are integral to cell physiology. The ubiquitin-selective chaperone Cdc48 (p97 in Metazoa), an AAA-ATPase, might facilitate such processes in the cell cycle. Cdc48 in budding yeast was initially isolated from a mitotic mutant. However, its function in mitosis remained elusive. Here we show that the temperature-sensitive cdc48-3 mut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EMBO reports

دوره 5 8  شماره 

صفحات  -

تاریخ انتشار 2004